- FITZWATER, D. R. (1958). Dissertation for Ph.D. degree, Iowa State University, Ames, Iowa.
- FITZWATER, D. R. & WILLIAMS, D. E. (1958). U.S. Atomic Energy Commission, interior Ames Laboratory Report No. AL-140, Ames, Iowa.
- KIRKPATRICK, M. E. & LARSEN, W.L. (1961). *Trans. Amer. Soc. Met.* 54, 580.
- KIRKPATRIC, M. E., BAILEY, D. M. & SMITH, J. F. (1962). *Acta Cryst.* 15, 252.
- Lu, C. S. (1943). *Rev. Sci. Instrum.* 14, 331.
- NELSON, J. B. & RILEY, D. P. (1945). *Proc. Phys. Soc. Lond.* 57, 160.
- PEARSON, W. B. (1958). *Handbook of Lattice Spacings and Structures of Metals and Alloys, p. 95. New York:* Pergamon.
- SMITR, E. & GUARD, R. W. (1957). *J. Metals,* 9, 1189. THOMAS, L. H. & UMEDA, K. (1957). *J. Chem. Phys. 26,* 293.
- ZALKIN, A. & JONES, R. E. (1956). *lncor I Program for Single Crystal X-ray Diffraction Data.* University of California Radiation Laboratory, Berkeley, California.

Acta Cryst. (1962). **15,** 903

The Crystal Structure of *x*-Niobium Tetraiodide

BY LAWRENCE F. DAHL AND DALE L. WAMPLER*

Department of Chemistry, University of Wisconsin, Madison 6, Wisconsin, U.S.A.

(Received 30 *October* 1961 *and in revised form* 26 *December* 1961)

Crystals of α -NbI₄ are orthorhombic, space group Cmc2₁, lattice parameters

 $a = 7.67 \pm 0.02, b = 13.23 \pm 0.02, c = 13.93 \pm 0.02~\text{\AA}~,$

with eight formula units in the unit cell. Final refinement by a three-dimensional anisotropic leastsquares analysis resulted in an R value of 8.6% .

The structure of solid α -NbI₄ is based on a distorted hexagonal close-packing of the iodine atoms. One-fourth of the available octahedral holes are occupied by niobium atoms to give infinite linear chains formed by NbI_6 octahedra sharing opposite edges. The niobium atoms are shifted from the centers of the octahedra toward one another in pairs to give a resulting Nb-Nb distance of 3.31 A. Weak metal-metal interactions which couple the unpaired electrons completely explain these niobium shifts and account for the observed diamagnetism of α -NbI₄. The valency state of niobium in α -NbI, is concluded to be IV from the observed identical environments of the niobium atoms. $x\text{-}NbI_4$ and the isomorphous TaI₄ are the first simple metal halides which have this structure.

Introduction

Corbett & Seabaugh (1958; Seabaugh, 1961) have synthesized and characterized by both chemical and physical means a number of new niobium iodide compounds including NbI_5 , NbI_3 , Nb_3I_8 , and two different forms of NbI_4 (α -NbI₄ and β -NbI₄).

Complete characterization by single-crystal X-ray diffraction is needed to reveal intimate structural interrelationships among these compounds as well as to provide important fundamental knowledge concerning their nature of bonding. This investigation of the low-temperature form of NbI_4 , α -NbI₄, was undertaken with the additional object of establishing the valency state of niobium in the compound. Normally tetravalent niobium should possess an unpaired electron and hence be paramagnetic.[†]

Rolsten (1958) prepared the presumably isomorphous TaI₄ and found it to be diamagnetic. He speculated that the unpaired electron in TaI₄ must be paired by formation of a dimer or else solid TaI4 must exist in a mixed oxidation state as $Ta(III)Ta(V)I_8$. Mixed oxidation states (i.e., I and III) have been found for gallium and for indium dihalides (Corbett & McMullan, 1955, 1956; McMullan & Corbett, 1958; Woodward *et al.,* 1956; Garton & Powell, 1957; Corbett & Hershaft, 1958; Carlston *et al.,* 1958; Clark *et al.,* 1958).

Brauer (1948) reported $NbO₂$ to be weakly paramagnetic although much less than expected for Nb(IV) ions. Schäfer *et al.* (1961) found TaOCl₂ and the tantalum and niobium tetrahalides $(X=Cl, Br, and I)$ to be diamagnetic and consequently suggested the presence of similar bonding conditions in niobium and tantalum compounds of the general type MX_4 , MOX_2 , and $MO₂$. They also stated that no isolated Ta(IV) ions are present in Ta0C12 but did not comment further on the valency state in these compounds. The structural determination of α -NbI₄ revealed weak metal-metal bonding and thereby explained

^{*} National Science Foundation Predoctoral Research Fellow, 1959-61. Present address: Dept. of Chemistry, Juniata College, Huntingdon, Pennsylvania, U.S.A.

 $\frac{1}{\alpha}$ -NbI₄ initially was reported to be paramagnetic (Corbett & Seabaugh, 1958), but in view of our structural results a redetermination of the magnetic susceptibility by Corbett & Seabaugh (1959) showed the compound to be diamagnetic.

its diamagnetism as well as that of TaI4. A preliminary report of the structure has been published (Dahl $\&$ Wampler, 1959). A structural determination (Marinder, 1960 of NbO₂ showed the occurrence of metal-metal doublets; presumably the compounds discussed by Schäfer et al. (1961) possess similar metal-metal interactions in which the unpaired electrons are coupled.

Experimental procedure

A sample of α -NbI₄ was kindly supplied in sealed tubes by Drs Seabaugh and Corbett. Since the compound is tmstable to air and water, single crystals were loaded into glass capillaries in a dry box. Thinwalled glass capillaries were prepared with one end attached to a male-glass joint which fit an appropriate adapter with a stopcock for attachment to the vacuum line. The capillaries were evacuated and then were taken into an argon-filled dry box. Argon used for flushing was dried by cooling to -80 °C.; the box atmosphere was continuously circulated through Linde Molecular Sieve Type 4A. A thin layer of vaseline, coated on the inside capillary walls by a thin glass rod prior to insertion of several crystals into each capillary, kept the crystals oriented. The capillaries were then evacuated and hermetically sealed. This technique, although somewhat cumbersome, has worked most satisfactorily in this and other instances.

The lattice parameters b and c were determined from a back-reflection Weissenberg photograph(Buerger, 1942) with cobalt radiation; the lattice parameter α was determined from precession photographs in which c was used as an internal standard.

Multiple-film equi-inclination Weissenberg photographs were obtained for nine reciprocal levels, $h=0$ to 8, with Zr-filtered Mo K_{α} radiation. A total of 919 diffraction maxima were observed. All intensities were measured by visual comparison with a calibrated standard set of intensities and were corrected for Lorentz-polarization effects. The crystal was sufficiently small (approximate dimensions $0.8 \times 0.05 \times 0.04$ mm.) that absorption corrections were neglected. Extinction corrections were not made.

Timed-exposure precession photographs of *hO1* and hk0 data were obtained with Mo K_{α} radiation and were corrected for the Lorentz-polarization factor. The resulting intensities were utilized to place the Weissenberg intensity data on a common scale.

Crystal data

 α -NbI₄; mol.wt.=600.6; phase transformation into β -form at 348 °C. (Seabaugh, 1961).

Orthorhombie,

$$
a = 7.67 \pm 0.02, \ \ b = 13.23 \pm 0.02, \ \ c = 13.93 \pm 0.02 \ \text{Å}.
$$

Volume of unit cell = 1.414 Å^3 .

Density (calculated) = 5.64 g.cm.⁻³.

Eight formula units per unit cell; total number of electrons per unit cell, $F(000) = 2.024$.

Linear absorption coefficient for Mo K_{α} radiation $(\lambda = 0.7107~\text{\AA})$, 203 cm. -1. Systematic absences :

hkl for $h + k$ odd; *hOl* for l odd.

Space group: $Cmc2_1(C_{2v}^{12})$, $C2cm(C_{2v}^{16})$, or $Cmcm(D_{2v}^{17})$. The final space group chosen, *Cmc*²₁, was determined by the structure ultimately found.

Structural determination

Two-dimensional Patterson projections were calculated for the three principal zones. Interpretation of these projections and the resulting Fourier maps gave the essential features of the structure. The structure was first refined on an IBM 650 computer by an essentially diagonal least-squares method (Senko & Templeton, 1956) with individual isotropic thermal parameters and constant weighting. A final discrepancy factor, $R = \sum ||F_o| - |F_c||/\sum |F_o| \times 100$, of 15.6% was obtained for the three-dimensional data. The atomic form factors for niobium and iodine used were those of Thomas & Umeda (1957). Dispersion corrections were made (Dauben & Templeton, 1955).

For the space group $Cmc2₁$ the niobium atoms occupy the general 8-fold set of positions $(8b)$; the iodines occupy two sets of 8b and four sets of 4-fold special positions (4a) on mirror planes *(International Tables for X-ray Crystallography,* 1952). These positions are as follows:

8b x, y, z; \bar{x} , y, z; \bar{x} , \bar{y} , $\frac{1}{2}$ + z; x , \bar{y} , $\frac{1}{2}$ + z; + C centering. 4a 0, y, z ; 0, \overline{y} , $\frac{1}{2} + z$; + C centering.

At this time a full matrix least-squares program for the IBM 704 (Busing & Levy, 1959) became available; further refinement was carried out with this program. Since for *Cmc21* the origin is not fixed by symmetry in the c lattice-vector direction, the z parameter of one iodine, I_1 , was not varied. The refinement again was based on isotropic thermal parameters and constant weighting; after three cycles of refinement negligible parameter shifts were obtained. The final parameters differed from those obtained from the IBM 650 by as much as three or four standard deviations. The R factor decreased markedly to 10.5% . The sharp decrease in R is attributed to the relatively inaccurate method of obtaining trigonometric functions used in the IBM 650 program. The refinement was then repeated with weights assigned to the reflections according to the functions (Hughes, 1941; Lavine & Lipscomb, 1954) $\sqrt{w} = 10/F_o$ if $F_o \ge 4F_{\text{min}}$; $\sqrt{w} = F_o/1.6F_{\text{min}}^2$ if $F_o < 4F_{\text{min}}$. Although the R value only decreased slightly to 10.2% , the changes in the thermal parameters were as much as five times the standard deviations (constant weighting); the changes in positional parameters were as much as three times the standard deviations. The standard deviations of the parameters were slightly lowered. The resulting parameters with their

Table 1. *Final atomic parameters* 704, *variable weighting, isotropic*

$\bold{Position}$		\boldsymbol{x}	y	\boldsymbol{z}	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	В	$\sigma(B)$
8 _b		0.2467	0.0061	-0.0323	0.0004	0.0003		1.25	0.07
8 _b	-2	0.2458	0.2334	0.2842	0.0004	0.0003	0.0003	$1-33$	0.07
4a	$^{\mathbf{42}}$	0	0.2608	0.0333		0.0004	0.0004	$1\!\cdot\!37$	0.08
4a	-4	0.5000	0.2436	0.0440		0.0005	0.0004	1.45	0.08
4a	-5	0	-0.0113	0.2096		0.0004	0.0004	1.39	0.08
4a	-6	0.5000	0.0066	0.1999		0.0004	0.0004	1.51	0.08
8 _b	Nb	0.2171	0.1256	0.1207	0.0006	0.0003	0.0005	$1-10$	0.06

Table 2. *Final positional parameters* 704, *variable weighting, anisotropic*

standard deviations are listed in Table 1. The thermal parameters after this refinement showed much more internal consistency than those obtained from the constant weighting refinements. The thermal parameters are approximately the same in each of the following pairs of similar atoms (see Fig. 1 for atom designation); the apical iodines $(I_1 \text{ and } I_2)$, the bridging iodines towards which the niobium is displaced $(I_3 \text{ and } I_5)$, and the other two bridging iodines $(I_4 \text{ and } I_6)$. These results show the importance of the weighting scheme in least-squares refinements involving film data.

Fig. 1. Configuration of an $(NbI₄)₂$ unit in the linear infinite chain uncorrected for thermal vibration.

To provide 'a better calculated model and thereby obtain more meaningful positional parameters, leastsquares refinement was continued. Individual atom temperature factors expressed in the form

$$
exp{-[B_{11}h^2+B_{22}k^2+B_{33}l^2+2B_{12}hk+2B_{13}hl+2B_{23}kl]}
$$

were used. For the iodine atoms in special positions (set $4a$) on mirror planes, the thermal coefficients B_{12} and B_{13} are required by symmetry to be zero (Levy, 1956). The final R value from the anisotropic refinement is 8.6% . The final positional parameters are listed in Table 2; the thermal parameters, in Table 3; and the final values for scaled F_o and F_c , in Table 4.

Table 3. Final thermal parameters in $A^2 \times 10^4$

The bond lengths and angles for an NbI₄ unit and their standard deviations which were computed from the final parameters of the anisotropic refinement are given in Table 5. Intra- and interchain distances between non-bonding atoms are listed in Table 6. The letters A and B before an atom designation denote different symmetry-related atoms. A Function and Error Program was kindly furnished by Busing & Levy for our calculations on the IBM 704 (Busing & Levy, 1959).

Analysis of anisotropic thermal motion

The three orthogonal principal axes of the ellipsoid of thermal vibration were computed from the anisotropic temperature coefficients B_{ij} in Table 3 by the method of Busing & Levy (1958). Table 7 contains $u(r)$, the root-mean-square component of thermal displacement of the atom along the *r*th principal axis $(r=1, 2, \text{ or } 3)$, and the angles $\varphi(r, i)$, made by the rth principal axis with the ith crystallographic axis. Examination of the displacements shows all the atoms to have anisotropic character. The restrictions on the temperaturefactor coefficients of the bridging iodines which lie Table 4. Observed and calculated structure factors

on mirror planes correspond to fixing the direction of one principal axis of displacement for each atom normal to the mirror plane as seen in Table 7.

In order more easily to visualize the thermal motions of individual atoms with respect to the infinite molecular chains, the r.m.s. component of thermal displacement of each atom along a set of

molecular axes was computed. The natural choice of molecular axes is given by

$$
X_1 \propto V, \; X_2 \propto V \times W, \; X_3 \propto X_1 \times X_2 \; ,
$$

where V is the Nb-Nb direction and W is the I_1-I_2 direction. With this choice of axes, X_2 approximately coincides with the I_3-I_5 direction and X_3 with the

LAWRENCE F. DAHL AND DALE L. WAMPLER

 I_1-I_2 direction. The amplitudes of thermal vibration, $u(m)$, along X_1, X_2 , and X_3 are given in Table 8.

ь \mathbf{r} $\mathbf{1}$ $r_{\rm o}$ $r_{\rm c}$ $\mathbf{A}_\mathbf{c}$ $\mathbf{B}_\mathbf{c}$

2 12 $\frac{1}{16}$

 $2 - 14$

 $2, 16$ \mathbf{I}

 218

 220

 22

 $\overline{2}$ $\overline{}$

 $\overline{\mathbf{z}}$ 5

 $\overline{\mathbf{z}}$ $\overline{7}$

 $\mathbf{1}$ $\overline{\mathbf{3}}$

Ž

 $\frac{102}{134}$

 $^{71}_{18}$ $\frac{5}{11}$ $\frac{-71}{-41}$

The unusual sensitivity of thermal parameters to systematic error makes it difficult to attach definite physical significance to the calculated amplitudes of thermal motion. It should be noted, however, that for the niobium atom and apical iodines $(I_1 \text{ and } I_2)$ the indicated r.m.s. displacements normal to the bonding directions are greater than the displacements along the bonds.

Corrections in the bond lengths to allow for this thermal effect are of the order of 0.01 Å and are

۰.

 $\frac{8}{16}$ 38

 $\mathbf 1$ $\pmb{r_o}$ $r_{\rm c}$

 $\frac{9}{10}$

 $\frac{91}{87}$ 88 Table 4. (cont.)

Table 5. Bond lengths and angles with standard deviations

 \bar{z}

 \downarrow

908

Table 6. *Nearest neighbor* I-I *distances in* NbI4

Atoms related by a mirror and C-centering are designated by A and B respectively.

listed in Table 5. These corrections in bond lengths due to thermal vibrations are less than twice the standard deviations of the uncorrected bond lengths.

Discussion of the structure

Solid α -NbI₄ consists of infinite chains parallel to the a axis formed by $NbI₆$ octahedra sharing two opposite edges. The niobium atoms are each shifted 0.26 Å from the centers of the octahedra of iodine atoms toward one another in pairs to give a resulting Nb-Nb distance of 3.31 A. Fig. 1 shows the configuration of

Table 8. *R.m.s. displacements along molecular chain axes*

$_{\rm Atom}$	Along Nb-Nb direction $u(1)$	Along I_3-I_5 direction $u(2)$	Along I_1-I_2 direction $u(3)$
	0.170 Å	0.158 Å	0.110 Å
	0.154	0.148	0.111
${\bf I_1} \ {\bf I_2} \ {\bf I_3} \ {\bf I_4} \ {\bf I_5} \ {\bf I_6}$	0.117	0.135	0.140
	0.127	0.116	0.127
	0.139	0.095	0.180
	0.133	0.155	0.157
Ńb	0.086	0.131	0.110

an $(NbI₄)₂$ unit in the infinite linear chain corresponding to one unit cell in periodicity (i.e., of length $a = 7.67$ Å). With respect to an origin chosen at the center of the localized unit, the approximate point group symmetry is D_{2h} -mmm; the required crystallographic symmetry through this point is C_s -m. The two Nb-I distances (corrected for thermal motion) for each of the two pairs of similar bridge bonds do not differ significantly, 2.74 and 2.77 Å (both $+0.007$) for Nb-I₃ and Nb-I₅; 2.90 and 2.91 Å (both $+0.007$) for Nb-I4 and Nb-I6. The difference between the two apical Nb-I distances, 2.67 and 2.71 Å (both \pm 0.007 Å) is possibly significant. The mean of the two apical Nb-I bond lengths, 2.69 A, is considerably shorter than the mean bridge Nb-I length, 2-83 A. This smaller distance is consistent with a higher bond order for the terminal (apical) Nb-I bonds.

The arrangement of the chains in the unit cell are given in Figs. 2-4. The [100] unit cell projection (Fig. 2) clearly shows the packing of the infinite linear chains normal to the chain length. An informative way of viewing the α -NbI₄ structure is to consider the iodine atoms as being in hexagonal close-packed array. This hexagonal close-packing is evident in the projection of the structure along the [010] direction

Table 7. *The principal axes r.m.s, displacements and orientations with crystallographic axes*

Atom	r	u(r)	$\varphi(r, a)$	$\varphi(r, b)$	$\varphi(r, c)$
I_1	ı	0.084 ± 0.007 Å	$91.2 + 2.2^{\circ}$	$27.9 + 2.7^{\circ}$	$62 \cdot 1 + 2 \cdot 7$ °
	$\overline{2}$	$0.167 + 0.006$	37.6 ± 31.2	72.5 ± 11.9	$122 \cdot 1 + 26 \cdot 1$
	3	0.176 ± 0.006	52.4 ± 31.2	$111 \cdot 1 \pm 10 \cdot 1$	$45 \cdot 1 + 23 \cdot 6$
$\mathbf{I_{2}}$	ı	$0.106 + 0.006$	$89.3 + 5.3$	$73.8 + 6.3$	$16.2 + 6.5$
	$\boldsymbol{2}$	$0.139 + 0.004$	$132.2 + 9.8$	$135 \cdot 1 + 9 \cdot 5$	$77.6 + 7.4$
	3	0.166 ± 0.006	$137.7 + 9.8$	49.6 ± 9.3	$100.3 + 4.2$
\mathbf{I}_3	ı	0.161 ± 0.009	90.0	$97.6 + 6.5$	7.6 ± 6.5
	$\boldsymbol{2}$	$0.117 + 0.010$	180.0	$90-0$	90.0
	$\overline{\mathbf{3}}$	0.109 ± 0.010	90.0	7.6 ± 6.5	82.4 ± 6.5
I_4 .	1	$0.102 + 0.012$	$90-0$	$110.0 + 11.9$	20.0 ± 11.9
	$\overline{2}$	$0.127 + 0.009$	$180-0$	$90-0$	90.0
	3	$0.138 + 0.007$	$90-0$	20.0 ± 11.9	70.0 ± 11.9
I_5	1	0.181 ± 0.008	90.0	60.3 ± 4.1	$29.7 + 4.1$
	$\overline{2}$	$0.139 + 0.010$	$180-0$	90.0	90.0
	$\bf{3}$	0.094 ± 0.011	$90-0$	29.7 ± 4.1	119.7 ± 4.1
I_{6}	ı	$0.182 + 0.009$	90.0	$99.9 + 6.5$	$9.9 + 6.5$
	$\boldsymbol{2}$	0.133 ± 0.010	$180-0$	$90-0$	$90-0$
	3	0.124 ± 0.008	$90-0$	9.9 ± 6.5	$80 \cdot 1 \pm 6 \cdot 5$
Nb	ı	$0.135 + 0.004$	$92.2 + 10.6$	14.3 ± 6.5	$104.1 + 6.4$
	$\overline{2}$	0.106 ± 0.005	$84 \cdot 1 + 33 \cdot 3$	$103.8 + 7.0$	164.9 ± 12.3
	3	0.086 ± 0.018	6.3 ± 30.7	86.5 ± 11.9	$84.8 + 32.9$

Fig. 2. [100] projection of the unit cell. The asymmetric part is outlined by dashed lines.

(Fig. 3). The niobium atoms occupy 1/4 of the available oetahedral holes to form linear chains by filling every other row of octahedral holes in every other layer. To a first approximation the iodine atoms lie in four layers at $y=0$, $1/4$, $1/2$, and $3/4$; the niobium atoms fill $1/2$ the octahedral holes at $y=1/8$ and $5/8$; the holes at $3/8$ and $7/8$ are unocuepied. The small but significant directional shifts of the iodine atoms from regular hexagonal close-packed positions (observed in Figs. 3 and 4) can be readily explained from the niobium positions. For instance, the bridge iodines toward which the niobium atoms have shifted are further apart than are the bridge iodines away from which the niobium atoms have shifted (4.37 versus 3.81 Å). The distances of the nearest of the twelve iodine neighbors are given in Table 6 for each iodine in the asymmetric unit. As expected, the shorter iodine-iodine contacts result from iodine atoms bonded to niobiums in the same chain. These intrachain contacts with the exception of the bridge iodine distance mentioned above vary from 3.76 to 4.0 Å. The iodine-iodine contacts between chains range from 3-9 to 4.3 A; surprisingly, most interchain distances are shorter than the normal van der Waals distance of 4.3 Å (Pauling, 1960).

Structural calculations of X-ray data showed the tetraiodides of Nb and Ta to be isomorphous (Dahl & Wampler, 1959). These are the first simple metal halides which have this structure; the metal-metal distance of 3.31 Å is the longest distance known which definitely involves a pairing of electrons. Much shorter Nb-Nb bonds are found in the ion $[Nb_6Cl_{12}]$ ²⁺ (2.85 Å) (Vaughan *et al.*, 1950) and in niobium metal (2.86 Å) (Sutton, 1958). Since all the niobium atoms in α -NbI₄ have identical environments, it can be

Fig. 3. [010] projection of the unit cell. The asymmetric part is outlined by dashed lines.

Fig. 4. [001] projection of the unit cell. The asymmetric part is outlined by dashed lines.

concluded that the valency state for Nb is IV and not a mixture of III and V states.

A qualitative description of the nature of bonding of α -NbI₄ has been outlined in terms of simple M.O. theory based on assumed octahedral symmetry about

each niobium atom (Dahl & Wampler, 1959). M.O. symmetry arguments based on a model of idealized D_{2h} symmetry for the localized structural unit, $(NbI₄)₂$, (not given here to conserve space) are consistent with our proposal of weak metal-metal interaction involving the direct overlap of pairs of d_{xy} niobium orbitals.

We wish to thank the Petroleum Research Advisory Board (Fund No. 471A) for financial assistance (L.F.D.) and the Numerical Analysis Laboratory of the University of Wisconsin for the use of their IBM 650 computer. We also wish to acknowledge the use of the facilities of the Ames Laboratory of the U.S. Atomic Energy Commission.

References

- BRAVER, G. (1948). *Z. anorg. Chem.* 256, 10.
- BUEROER, M. J. (1942). *X-Ray Crystallography,* chap. 20. New York: Wiley.
- BusiNc, W. R. & LEVY, H. A. (1958). *Acta Cryst.* 11,450.
- BUSING, W. R. & LEVY, H. A. (1959). *A Crystallographic Least Squares Refinement Program for the IBM* 704, ORXLS.
- BusING, W. R. & LEvY, H. A. (1959). *A Crystallographic Function and Error Program for the IBM* 704. ORXFE.
- CARLSTON, R. C., GRISWOLD, E. & KLEINBERG, J. (1958). *J. Amer. Chem. Soc.* 80, 1532.
- CLARK, R. J., GRISWOLD, E. & KLEINBERG, J. (1958). *J. Amer. Chem. Soc.* 80, 4764.
- CORBETT, J. D. & HERSHAFT, A. (1958). *J. Amer. Chem. Soc.* 80, 1530.
- CORBETT, J. D. & McMULLAN, R. K. (1955). *J. Amer. Chem. Soc.* 77, 4217.
- CORBETT, J. D. & McMULLAN, R. K. (1956). *J. Amer. Chem. Soc.* 78, 2906.
- CORBETT, J. D. & SEABAUGH, P. (1958). *J. Inorg. Nucl. Chem.* 6, 207.
- CORBETT, J. D. & SEABkUOH, P. (1959). (Private communication.)
- DAHL, F. L. & WAMPLER, D. L. (1959). *J. Amer. Chem. Soc.* 81, 3150.
- DAUBEN, C. H. & TEMPLETON, D. H. (1955). *Acta Cryst*. **8,** 841.
- GARTON, G. & POWELL, H. M. (1957). *J. Inorg. Nucl. Chem.* 4, 84.
- HUGHES, E. W. (1941). *J. Amer. Chem. Soc.* 63, 1737.

International Tables for X-Ray Crystallography (1952). Birmingham: the Kynoch Press.

- LAVINE, L. R. & LIPSCOMB, W. N. (1954). *J. Chem. Phys.* 22, 614.
- LEVY, H. A. (1956). *Acta Cryst.* 0, 679.
- MARnVDER, BENOT-OLov (1960). *Acta Cryst.* 1S, 1023.
- MCMULLAN, R. K. & CORBETT, J. D. (1958). *J. Amer. Chem. Soc.* 80, 4761.
- PAULING, L. (1960). The Nature of the Chemical Bond. Cornell: University Press.
- ROLSTEN, R. (1958). *J. Amer. Chem. Soc.* 80, 2952.
- SCHÄFER, H., SIBBING, E. & GERKEN, R. (1961). *Z. anorg. Chem.* 307, 173.
- SEABAUOE, P. (1961). Thesis. Iowa State University, U.S.A.
- SENKO, M. E. & TEMPLETON, D. H. (1956). *A Crystallographic Least Squares Program for the IBM* 650 *Computer.* University of California Radiation Laboratory.
- SUTTOn, L. E. (1958). *Tables of Interatomic Distances and Configuration in Molecules and Ions,* p. \$7. Special Publication No. 11. London: The Chemical Society. Burlington House, W. 1.
- THOMAS, L. H. & UMEDA, K. (1957). *J. Chem. Phys.* 26, 293.
- VAUGHAN, P. A., STURDIVANT, J. H. & PAULING, L. (1950). *J. Amer. Chem. Soc. 72,* 5477.
- WOODWARD, L. A., GARTON, G. & ROBERTS, H. (1956). *J. Chem. Soc., p.* 3723.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 *words; they should be forwarded in the usual way to the appropriate Co.editor ; they wilt be published as speedily* as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1962). 15, 911

 $A C 15 - 59$

A preliminary investigation of the crystal and molecular structure of α -D-glucose monohydrate. By R. C. G. KILLEAN, W. G. FERRIER and D. W. YOUNG, *Carnegie Laboratory of Physics, Queen's .College, Dundee, Scotland*

(Received 18 *January* 1962 *and in revised form* 15 *March* 1962)

 α -D-Glucose (l α -D-glucopyranose) is easily crystallized as a monohydrate. The needle crystals are monoclinic and the cell dimensions obtained from Weissenberg photographs are

$$
a = 8.84 \pm 0.03, b = 5.10 \pm 0.02, c = 9.69 \pm 0.03 \text{ Å};
$$

$$
\beta = 98.25 \pm 0.25^{\circ}.
$$

The density is $1.512+0.005$ g.cm.⁻³, indicating that

there are two molecules per unit cell. The only systematic absences observed were $0k0$ for k odd, and the space group is thus $P2_1$.

Equi-inclination Weissenberg photographs were taken with Cu radiation, a multi-film technique being used, and the intensities were estimated visually for some thousand reflections. Several small crystal specimens were employed and no absorption corrections have been applied.